Depth-Averaged Non-Hydrostatic Hydrodynamic Model Using a New Multithreading Parallel Computing Method
نویسنده
چکیده
Compared to the hydrostatic hydrodynamic model, the non-hydrostatic hydrodynamic model can accurately simulate flows that feature vertical accelerations. The model’s low computational efficiency severely restricts its wider application. This paper proposes a non-hydrostatic hydrodynamic model based on a multithreading parallel computing method. The horizontal momentum equation is obtained by integrating the Navier–Stokes equations from the bottom to the free surface. The vertical momentum equation is approximated by the Keller-box scheme. A two-step method is used to solve the model equations. A parallel strategy based on block decomposition computation is utilized. The original computational domain is subdivided into two subdomains that are physically connected via a virtual boundary technique. Two sub-threads are created and tasked with the computation of the two subdomains. The producer–consumer model and the thread lock technique are used to achieve synchronous communication between sub-threads. The validity of the model was verified by solitary wave propagation experiments over a flat bottom and slope, followed by two sinusoidal wave propagation experiments over submerged breakwater. The parallel computing method proposed here was found to effectively enhance computational efficiency and save 20%–40% computation time compared to serial computing. The parallel acceleration rate and acceleration efficiency are approximately 1.45% and 72%, respectively. The parallel computing method makes a contribution to the popularization of non-hydrostatic models.
منابع مشابه
Numerical Investigation of Island Effects on Depth Averaged Fluctuating Flow in the Persian Gulf
In the present paper simulation of tidal currents on three-dimensional geometry of the Persian Gulf is performed by the solution of the depth averaged hydrodynamics equations. The numerical solution was applied on two types of discritized simulation domain (Persian Gulf); with and without major islands. The hydrodynamic model utilized in this work is formed by equations of continuity and motion...
متن کاملمدل سازی عددی انتقال و پخش آلودگی نفتی در دریا
Nowadays oil spill are one of the most important problem in the humans life. Usually advection and dispersion occur because of chemicals, physicals and biological processes that related by properties of oil and other things. These processes are evaporation, dispersion and so on. When oil spills on the sea, it is extended and made oil slick. Increasing these kinds of events cause developing many...
متن کاملParallelizing Assignment Problem with DNA Strands
Background:Many problems of combinatorial optimization, which are solvable only in exponential time, are known to be Non-Deterministic Polynomial hard (NP-hard). With the advent of parallel machines, new opportunities have been emerged to develop the effective solutions for NP-hard problems. However, solving these problems in polynomial time needs massive parallel machines and ...
متن کاملA parallel non-hydrostatic shallow water model on adaptive triangular meshes in $sam(oa)$^2
Even with current extreme scale systems, the accurate simulation of tsunamis continues to be a challenging problem. One commonly used model for this task are the hydrostatic shallow water equations which, however, are not able to represent all relevant physical effects of tsunamis. In this paper, we therefore show how to solve the non-hydrostatic shallow water equations in parallel within the p...
متن کاملNumerical investigation of effective harbor geometry parameters on sedimentation inside square harbors
Sedimentation is one of the most important problems in harbors that results in considerable economic costs. Harbor planforms affects the flow pattern in the harbor basin and consequently, plays an important role in sediment transport and sedimentation. In the present study, a two dimensional depth-averaged hydrodynamic and sediment transport model has been developed to investigate the effect of...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2017